Rabu, 21 Oktober 2020

 

POLIMER

Oleh : Hery Sudrajat, S.T.

 

KOMPETENSI DASAR

3.9.  Menganalisis struktur, tata nama, sifat dan penggolongan

         makromolekul (polimer).

4.9    Menalar dan menganalisis struktur,  tata nama, sifat dan

          kegunaan makromolekul (polimer).

 

TUJUAN PEMBELAJARAN

  Siswa dapat menjelaskan struktur polimer.

  Siswa dapat menjelaskan tatanama polimer.

  Siswa dapat menjelaskan sifat fisik dan sifat kimia polimer.

  Siswa dapat mendeskripsikan penggunaan polimer dan mewaspadai dampaknya terhadap lingkungan.

  Siswa dapat mengidentifikasi penggolongan polimer.

A.    Pengertian

Polimer adalah senyawa molekul besar berbentuk rantai atau jaringan yang tersusun dari gabungan ribuan hingga jutaan unit pembangun yang berulang. Plastik pembungkus, botol plastik, styrofoam, nilon, dan pipa paralon termasuk material yang disebut polimer.

Unit kecil berulang yang membangun polimer disebut Monomer. Sebagai contoh, polipropilena (PP) adalah polimer yang tersusun dari monomer propena.

 

B.     Jenis-jenis Polimer

1.      Jenis polimer berdasarkan sumbernya

1.1.   Polimer alam,

yaitu polimer yang terdapat di alam. Contoh:

1.2 Polimer sintetis,

            yaitu polimer yang tidak terdapat di alam. Contoh:


2.      Jenis polimer berdasarkan monomer penyusunnya

2.1 Homopolimer

     yaitu polimer yang tersusun dari satu jenis monomer. Contoh: polietilena (etena), polipropilena (propena), polistirena (stirena), PVC (vinil klorida), PVA (vinil asetat), poliisoprena (isoprena), dan PAN (akrilonitril).

2.2 Kopolimer

     yaitu polimer yang tersusun dari dua jenis atau lebih monomer. Contoh: nilon 6,6 (heksametilendiamina + asam adipat), dakron (asam tereftalat + etilena glikol), SBR (stirena + butadiena), dan ABS (akrilonitril + butadiena + stirena).

 

3.      Jenis polimer berdasarkan sifatnya

3.1. Termoplas

     yaitu polimer yang melunak jika dipanaskan, dan dapat dicetak kembali menjadi bentuk lain. Sifat ini disebabkan oleh struktur termoplas yang terdiri dari rantai-rantai panjang dengan gaya interaksi antar molekul yang lemah. Sifat-sifat lain dari termoplas adalah ringan, kuat, dan transparan. Contoh termoplas adalah polietilena, polipropilena, PET, dan PVC.

3.2. Termoset

     yaitu polimer yang memiliki bentuk permanen dan tidak menjadi lunak jika dipanaskan. Sifat ini disebabkan oleh ada banyaknya ikatan kovalen yang kuat antara rantai-rantai molekul. Pemanasan termoset pada suhu yang terlalu tinggi dapat memutuskan ikatan-ikatan tersebut dan bahkan membuat termoset menjadi terbakar. Contoh termoset adalah bakelit dan melamin.

3.3. Elastomer

     yaitu polimer yang elastis; bentuknya dapat diregangkan, namun dapat kembali ke bentuk semula setelah gaya tariknya dihilangkan. Elastisitas ini disebabkan oleh struktur elastomer yang terdiri dari rantai-rantai yang saling tumpang tindih dengan adanya ikatan silang (cross-link) yang akan menarik kembali rantai-rantai tersebut kembali ke susunan tumpang tindihnya. Contoh elastomer adalah karet alam (poliisoprena) dan karet sintetis SBR.

 

C.    Reaksi Polimerisasi

            Reaksi pembentukan polimer dari monomernya disebut reaksi polimerisasi. Reaksi polimerisasi dibedakan menjadi dua jenis, yaitu:

            1. Polimerisasi adisi

            Polimerisasi adisi umumnya terjadi pada monomer yang mempunyai ikatan rangkap. Umumnya monomer yang direaksikan dalam polimerisasi adisi adalah senyawa alkena dan turunannya. Dari reaksi polimerisasi adisi dihasilkan polimer adisi sebagai produk tunggal. Contoh reaksi polimerisasi adisi:

            1.1. Pembentukan polietilena (PE) dari etena

2. Polimerisasi kondensasi

            Polimerisasi kondensasi merupakan penggabungan monomer dengan reaksi kimia yang terjadi antara dua gugus fungsi berbeda dari masing-masing monomer. Polimerisasi ini terjadi pada monomer yang masing-masing mempunyai setidaknya dua gugus fungsi reaktif. Dari hasil polimerisasi kondensasi dihasilkan polimer dan juga molekul-molekul kecil, seperti H2O, HCl, dan CH3OH. Polimer seperti poliester, poliamida, polikarbonat, dan poliuretana disintesis melalui reaksi polimerisasi kondensasi. Contoh reaksi polimerisasi kondensasi:

            Pembentukan poliester: PET dari dimetil tereftalat dan etilena glikol

 

 D.   Aplikasi Polimer Sintetis

1. PVC

            Poli Vinil Clorida (PVC) yang bersifat lunak digunakan untuk selang air, jas hujan, dan insulasi listrik. Sedangkan, PVC yang bersifat kaku digunakan untuk pipa dan pelapis lantai.

 

2. PS

            Polistirena (PS) memiliki beberapa macam bentuk. Polistirena yang berbentuk kaku dan mudah pecah digunakan untuk kotak kaset, peralatan makan—sendok, garpu, dan pisau—plastik. Polistirena berbentuk foam, yakni styrofoam, memiliki sifat insulator panas yang baik. Oleh karena itu, styrofoam banyak digunakan untuk wadah makanan/minuman dan juga gabus penahan benturan dalam kemasan alat elektronik.

 

3. PE (LDPE dan HDPE)

            Polietilena (PE) memiliki beragam bentuk. HDPE (high-density polyethylene) adalah polietilena dengan sifat lebih kuat dan kaku yang banyak digunakan untuk botol plastik dan mainan. LDPE (low-density polyethylene) adalah polietilena dengan sifat lebih plastis dan titik leleh lebih rendah dibanding HDPE. LDPE banyak digunakan untuk plastik lembaran, kantong plastik, dan pembungkus kabel.

 

4. PP

            Polipropilena (PP) digunakan untuk botol plastik, tali, karung plastik, karpet, peralatan laboratorium, dan mainan.

 

5. PTFE

            Poli Tetra Fluoro Etilena (PTFE) yang dikenal juga dengan nama dagang Teflon, memiliki sifat kuat, tidak reaktif, dan tahan panas. PTFE digunakan sebagai gasket, pelapis tangki bahan kimia, dan pelapis panci anti lengket.

 

6. PMMA

            Poli Metil Metakrilat (PMMA) yang dikenal juga dengan nama dagang Plexiglas atau Lucite atau Perspex, memiliki sifat kuat, keras, ringan, dan transparan. PMMA digunakan untuk alat optik, kaca jendela pesawat terbang, furnitur, dan glove box.

 

7. PET

            Poli Etilena Tereftalat (PET) yang dikenal juga dengan nama dagang Dacron atau Terylene, banyak digunakan sebagai serat tekstil. Selain itu, PET juga banyak digunakan sebagai botol minuman. Dalam bentuk film tipis, PET dengan nama dagang Mylar bersifat kuat dan tahan terhadap robekan, sehingga digunakan untuk pita perekam magnetik, layar perahu, dan kemasan barang.

 

8. Nilon

            Nilon merupakan polimer berbentuk serat yang bersifat kuat, ringan, dan tahan terhadap tegangan. Oleh karena itu, nilon banyak digunakan untuk membuat tali, jala, parasut, tenda, jas hujan, karpet, dan sebagainya.

 

 

 

 

 

 

Momentum dan Impuls

Bagian I

 

Momentum

Momentum adalah kata yang sering kita dengar dan digunakan dalam kehidupan sehari-hari. Kita sering mendengar kata bahwa tim olahraga dan kandidat politik memiliki "banyak momentum". Dalam konteks ini, pembicara biasanya bermaksud untuk menyiratkan bahwa tim atau kandidat telah banyak meraih kesuksesan baru-baru ini dan akan sulit bagi lawan untuk melawannya. Atau sebuah tim yang memiliki momentum sedang bergerak dan akan berusaha keras untuk berhenti. Sebuah tim yang memiliki banyak momentum benar-benar sedang bergerak dan akan sulit dihentikan. Momentum adalah istilah fisika; itu mengacu pada kuantitas gerak yang dimiliki suatu benda. Tim olahraga yang sedang bergerak memiliki momentum. Jika sebuah benda bergerak (bergerak) maka ia memiliki momentum.

Momentum dapat didefinisikan sebagai "massa yang bergerak". Semua benda memiliki massa; jadi jika sebuah benda bergerak, maka ia memiliki momentum. Jumlah momentum yang dimiliki suatu benda bergantung pada dua variabel: seberapa banyak benda bergerak dan seberapa cepat benda tersebut bergerak. Momentum bergantung pada variabel massa dan kecepatan. Dalam persamaan, momentum suatu benda sama dengan massa benda dikalikan kecepatan benda.

Momentum = massa • kecepatan

Dalam fisika, simbol momentum kuantitas adalah p kecil. Dengan demikian, persamaan di atas dapat ditulis ulang menjadi

p = m • v

dimana m adalah massa dan v adalah kecepatan. Persamaan tersebut menggambarkan bahwa momentum berbanding lurus dengan massa benda dan berbanding lurus dengan kecepatan benda.

Satuan momentum adalah satuan massa dikalikan satuan kecepatan. Satuan metrik standar momentum adalah kg • m / s.

 

Momentum sebagai Besaran Vektor

Momentum adalah besaran vektor. Sebagaimana dibahas dalam satuan sebelumnya, besaran vektor adalah besaran yang sepenuhnya dijelaskan oleh besaran dan arah. Untuk mendeskripsikan sepenuhnya momentum bola bowling 5 kg yang bergerak ke arah barat dengan kecepatan 2 m / s, Anda harus menyertakan informasi tentang besarnya dan arah bola bowling tersebut. Tidaklah cukup untuk mengatakan bahwa bola memiliki momentum 10 kg • m / s; momentum bola tidak sepenuhnya dijelaskan sampai informasi tentang arahnya diberikan. Arah vektor momentum sama dengan arah kecepatan bola. Pada satuan sebelumnya, dikatakan bahwa arah vektor kecepatan sama dengan arah gerak benda. Jika bola bowling bergerak ke barat, momentumnya dapat dijelaskan sepenuhnya dengan mengatakan bahwa bola tersebut adalah 10 kg • m / s, ke barat. Sebagai besaran vektor, momentum suatu benda sepenuhnya dijelaskan oleh besaran dan arah.

 

Persamaan Momentum sebagai Panduan Berpikir

Dari definisi momentum, terlihat jelas bahwa sebuah benda memiliki momentum yang besar jika massa dan kecepatannya besar. Kedua variabel sama pentingnya dalam menentukan momentum suatu benda. Pertimbangkan truk Mack dan sepatu roda yang bergerak di jalan dengan kecepatan yang sama. Massa yang jauh lebih besar dari truk Mack memberinya momentum yang jauh lebih besar. Namun jika truk Mack sedang diam, maka momentum dari sepatu roda paling kecil akan menjadi yang terbesar. Momentum benda diam adalah 0. Benda diam tidak memiliki momentum - mereka tidak memiliki "massa yang bergerak". Kedua variabel - massa dan kecepatan - penting untuk membandingkan momentum dua benda.

Sebagaimana disebutkan di bagian sebelumnya dari pelajaran ini, momentum adalah istilah yang umum digunakan dalam olahraga. Ketika seorang penyiar olahraga mengatakan bahwa sebuah tim memiliki momentum, itu artinya tim tersebut benar-benar bergerak dan akan sulit dihentikan. Istilah momentum adalah konsep fisika. Objek apa pun dengan momentum akan sulit dihentikan. Untuk menghentikan benda seperti itu, perlu diberikan gaya terhadap gerakannya selama jangka waktu tertentu. Semakin banyak momentum yang dimiliki suatu benda, semakin sulit pula untuk berhenti. Oleh karena itu, diperlukan gaya yang lebih besar atau waktu yang lebih lama atau keduanya untuk menghentikan benda semacam itu. Saat gaya bekerja pada benda selama waktu tertentu, kecepatan benda berubah; dan karenanya, momentum benda berubah.

Konsep dalam paragraf di atas seharusnya tidak tampak seperti informasi abstrak bagi Anda. Anda juga telah mengalami ini berkali-kali saat mengemudi. Saat Anda menghentikan mobil saat mendekati tanda berhenti atau lampu lalu lintas, rem berfungsi untuk memberikan gaya pada mobil selama jangka waktu tertentu untuk mengubah momentum mobil. Sebuah benda dengan momentum dapat berhenti jika ada gaya yang diterapkan padanya selama jangka waktu tertentu.

Gaya yang bekerja selama waktu tertentu akan mengubah momentum benda. Dengan kata lain, gaya yang tidak seimbang selalu mempercepat suatu benda - baik mempercepat atau memperlambatnya. Jika gaya bekerja berlawanan dengan gerakan benda, maka akan memperlambat gerak benda. Jika suatu gaya bekerja searah dengan gerakan benda, gaya tersebut mempercepat gerak benda. Bagaimanapun, gaya akan mengubah kecepatan suatu benda. Dan jika kecepatan benda berubah, maka momentum benda berubah.

 

Impuls

Impulse = Perubahan momentum

 

Salah satu fokus unit ini adalah memahami fisika tabrakan. Fisika tumbukan diatur oleh hukum momentum; dalam tabrakan, sebuah benda mengalami gaya untuk jangka waktu tertentu yang menghasilkan perubahan momentum. Hasil dari gaya yang bekerja selama waktu tertentu adalah massa benda bertambah cepat atau lambat (atau berubah arah). Impuls yang dialami benda sama dengan perubahan momentum benda. Dalam bentuk persamaan, F • t = m • Δ v.

 

 

Tulisan ini diambil dan diolah dari sumber:

https://www.khanacademy.org/

https://www.physicsclassroom.com/

https://physics.info/

KONEKSI ANTAR MATERI MODUL 3.2 PEMIMPIN PEMBELAJARAN DALAM PENGELOLAAN SUMBER DAYA   Oleh : Nining Yuningsih   Pengertian dan Im...